

Electrochemical Advanced Oxidation Process Technology and Product

Julie Bliss Mullen, CEO

julie.mullen@aclaritywater.com 617-213-0760

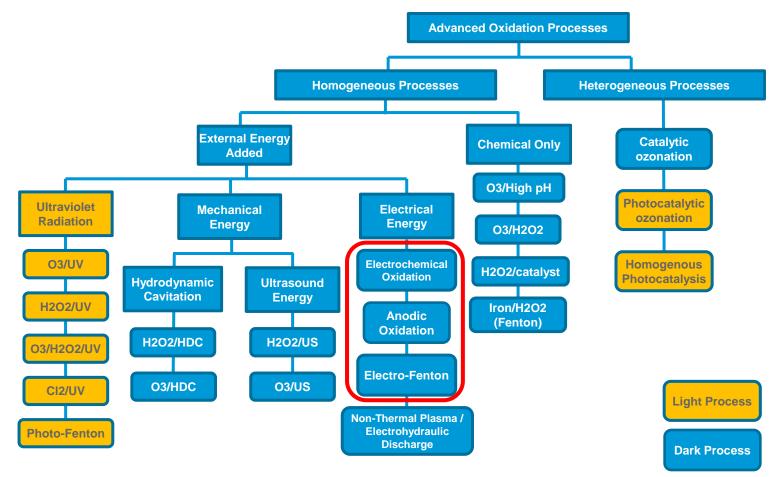
Clean. Safe. Water. aclaritywater.com

Aclarity - Background

Founded

- 2017– University of Massachusetts, Amherst
- Julie Bliss Mullen & Barrett Mully
- First commercial installations, sourced contract manufacturer

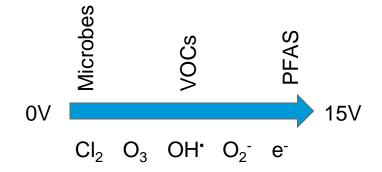
Financing

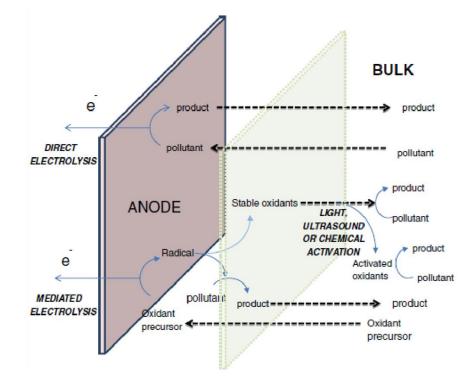

- Raised \$700K from three Venture Capital firms
- Awarded NSF SBIR Phase II for \$1,000,000 + potential matching

Staffing

- 10 people
- Hired Orren Schneider, Director of R&D, former American Water R&D
- Hired Bud Dunbar, Judith Herschell Cole for business development and sales
- Advisory Board

Electrochemistry is a Subset of AOPs

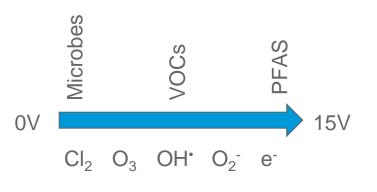



Source: Adapted from Sharma et al. 2011

Aclarity

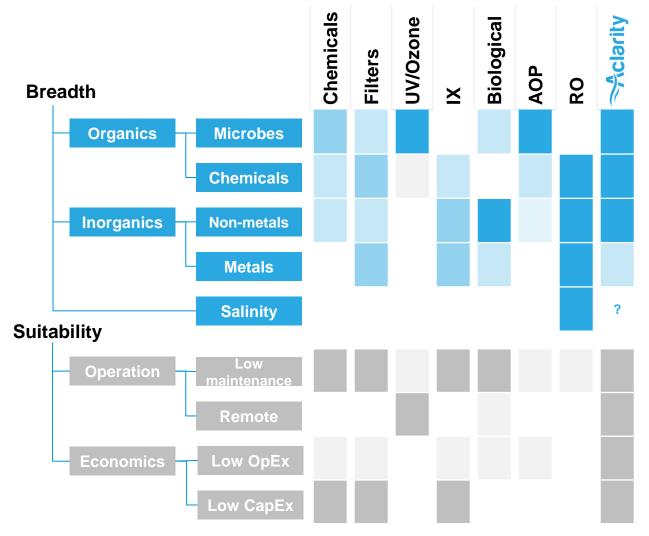
Electrochemical Advanced Oxidation (eAOPs)

- Electrodes placed in water
 - Heavy Metal Oxide Electrodes (SnO₂, Pt, TiO₂, IrO₂, etc.)
 - Boron Doped Diamond (BDD)
 - Graphite
- Mixed oxidant production with increasing voltage


Aclarity AES has best performance and is cheapest on the market

ATENT PENDI

- High oxidation potential
- Low energy
- Long-lasting electrodes (years)
- Less expensive electrodes
- No moving parts
- Low maintenance
- No chemical storage
- Modular, stackable
- Suitable for low and high flows



Electrode Material	Overpotential (V)			
Aclarity	2.5+			
BDD	2.2-2.6+			
Ti/SnO ₂ -Sb ₂ O ₅	1.9-2.2			
Ti/Pt	1.7-1.9			
IrO_2/Ta_2O_5	1.5-1.8			
RuO ₂ /TiO ₂	1.4-1.7			

Breadth, ease of operation, robustness, and low cost outperform incumbents

Successful pilots in a variety of use cases

Organio	CS	Examples	Sta	atus	Case Studies			
	Microbes	Bacteria, virus, algae, cysts	~	Live in field	NSF/ANSI P231 >6.4 log removal for bacteria and viruses			
					Active municipal water system in Bamako, Mali			
	Chemicals	PFAS, VOCs, 1,4-dioxane,	~	Field tested	Sizing 2 full-scale systems for automotive wastewater reuse			
					Groundwater VOC pilot for municipal well			
		pharmaceuticals, alcohols			15 pilots for PFAS contaminated water			
Inorganics					Partnership to sell skids for treatment of landfill leachate			
morgan		Ammonia,		Field tested	Sizing full-scale system for ammonia			
	Non-metals	nitrates, cyanide	\checkmark		treatment in dairy wastewater			
		Arsenic,		Lab tested	TBD			
	Metals	hardness, iron	\checkmark					
		Sea water		Future device	TBD			
	Salinity							
					©2020 Aclarity, LLC julie.mullen@aclaritywater.com			

Disinfection: NSF/ANSI P231 Challenge Test >6.3 log removal

Client ID	Flow Rate, in gpm	Voltage, in Volts	Current, in Amps	Conce (Df	dizer ntration PD), opm	Bacteria (Raoutella terrigena)*			Virus (MS-2)		
				Influent Water	Effluent Water	Influent (cfu/mL)	Effluent (cfu/mL)	Percent Removal	Influent (pfu/mL)	Effluent (pfu/mL)	Percent Removal
Unit A Tested 01/15/2020	10.0	13.0	8.05	0.0	0.55	8.38E+05	<0.3	>99.99996% >6.3-log	8.75E+05	<0.3	>99.99996% >6.3-log
Unit A retested 01/17/2020	10.0	12.9	8.01	0.0	0.51	8.26E+05	<0.3	>99.99996% >6.3-log	8.43E+05	<0.3	>99.99996% >6.3-log

Example: Disinfection at small municipal plant

- Community system for drinking water disinfection
- Disinfected >6.3 log removal of bacteria and viruses at 10 GPM
- 0.5 mg/L Cl_2 • residual with 100 mg/L NaCl, 130 mg/L TDS
- Verified by ٠ **NSF/ANSI P231** third-party testing

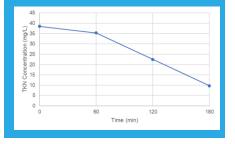
Current best-in-class

\$3K OpEx/year

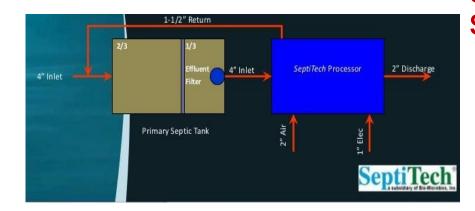
- Chlorine storage for addition is needed
- Expensive yearly

Aclarity solution

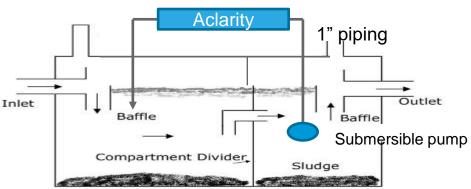
\$3K CapEx \$200 OpEx/year


- In-situ disinfectants
- No waste produced or parts to change
- 10+ year lifetime
- >6.3 log removal of both bacteria and viruses at 10 GPM

Example: Nitrogen pollution from septics on Long Island, Cape Cod



- Nitrogen seepage is killing surface water bodies
- Nitrates in drinking water, huge problem
- Massive subsidies to unsewered homes
- Current solution is
 not economic
- Each county needs technology approval



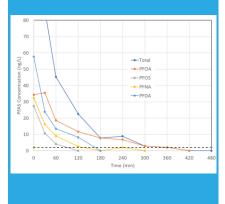
Aclarity

Current I/A OWTS's use nite/denite

Aclarity solution

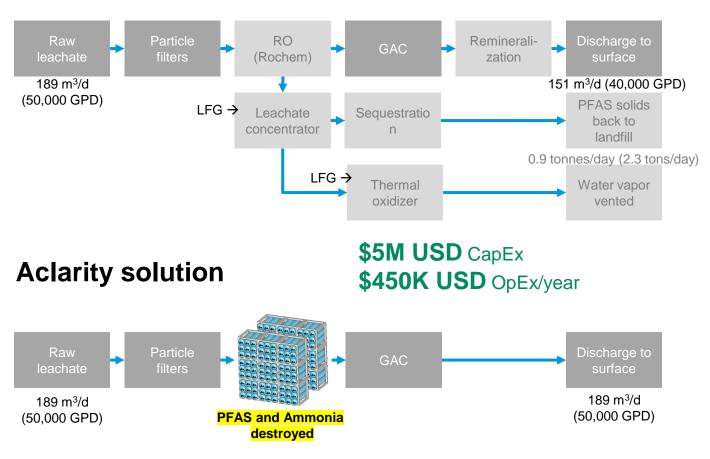
\$15-\$20K CapEx, \$200/yr Electricity \$200/yr Maintenance

- Dig up yard to install
- Expensive
- Requires yearly maintenance


\$5K CapEx **\$200** OpEx/year

- External installation
- Affordable

Example: PFAS destruction from landfill leachate


- Complex stream: PFAS, ammonia, etc.
- Existing treatment processes sequester contaminants
- Often far from treatment plants

Sclarity

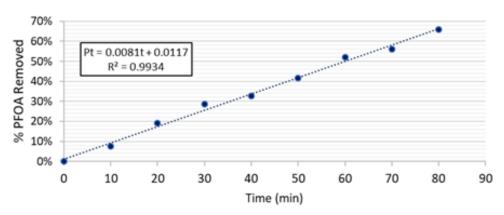
Current best-in-class

\$17M USD CapEx \$900K USD OpEx/year

PFAS in Drinking Water

PFOA pilot:

- Influent PFOA= 300 µg/L
- Treated via Aclarity Test System = $132 \mu g/L$ in closed loop for 80 minutes
- 66% removal
- 16V, 4 A= 62W
- 78 Wh/gal

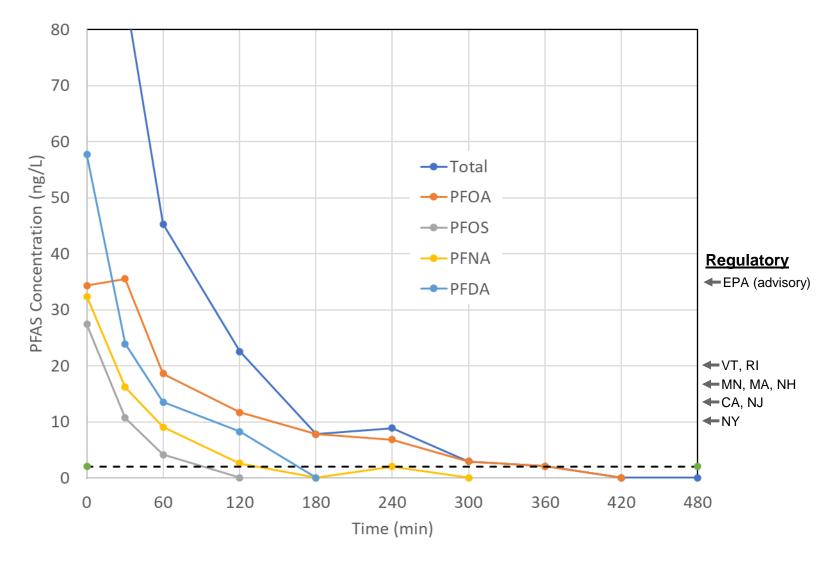

Proposed method for PFAS destruction:

- C-F bonds broken by free electrons
- Fragments mineralized by OH[•]

Applications:

Sclarity

- IX brine treatment
- Military base remediation
- Municipal water streams



PFAS Destruction in ppt (ng/L) range

Source: Alpha Analytical (report 5/4/20 with Aclarity samples);

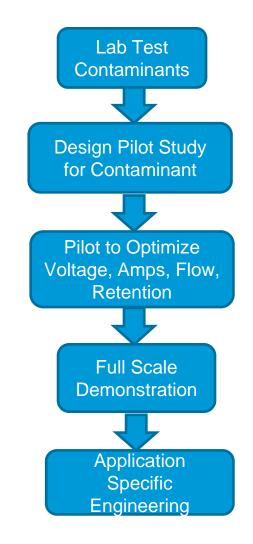
Bryan Cave Leighton Paisner, "State-by-State Regulation of Per- and Polyfluoroalkyl Substances (PFAS) in Drinking Water" (July 2019)

Note: EPA and MA levels are the sum of individual levels, shown here as the average allowed for each; median used if state has different limits for individual chemicals

Wastewater treatment applications

- Aclarity eAOP directly converts Ammonia/TKN to Nitrogen gas
 - Nitrification is the rate limiting reaction in aeration basins
 - Eliminating TKN could speed aeration to just BOD removal
 - Produces some nitrate, need to experiment with modulating voltage, reducing cathode catalysts, or flow into anoxic zone
- Aclarity eAOP uses less electricity than UV to disinfect
 - Produces 6 log disinfection vs 2.4 log for UV
 - No moving parts, titanium ceramic electrodes don't burn out every year
 - Works in high turbidity, many plants struggle with this in UV
 - Replaces Advanced Oxidation Processes
 - Simultaneously destroys pharmaceuticals, contaminants of interest, and virtually everything else
- Aclarity eAOP could destroy large molecules in cell membranes
 - Break up large cell membrane molecules in biosolids, feed them back into AD, Increase biogas, decrease solids disposal

How we work with customers

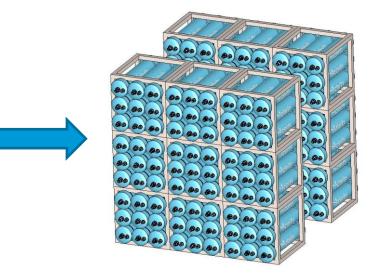

Find a site/champion to do the Pilot tests

- Break up cell membrane molecules in AD biosolids, recycle to AD, reduce solids disposal, increase biogas
- Convert TKN to N2 gas in screened primary effluent, eliminate/reduce aeration
- Replace UV for: disinfection, polishing

Use pilot test to find optimal volts, amps, flow, recycle rates, holding time (if any), confirm no biproducts

If pilot tests are successful, fund 1 MGD scale demonstration project, we'll help you find grants

Specify product engineering for specific applications



Aclarity Pilot Tests: Pilot to demonstrate Efficacy, optimize voltage, amperage, flow, retention time \$6K, results (money back) guaranteed

Full Scale Implementation

Aclarity – Summary

- 1. Electrochemistry has the potential to become a disruptive technology
- 2. It generates the most powerful oxidants that break up molecules other technologies can't, e.g. PFAS, leachate brine, biosolids
- 3. This is a cost-competitive technology
- 4. It is highly flexible, changing voltage changes oxidant, changing amperage changes intensity
- 5. Three huge opportunities in municipal wastewater are: disinfection, ammonia/TKN, and biosolids
- 6. This is moving quickly. Aclarity has resources and partners to develop specific applications
- 7. Next phase of development Economies of scale
- 8. Looking for pilot partners in these and other applications

Aclarity

Thank you!

Aclarity Contacts:

Julie Bliss Mullen, CEO julie.mullen@aclaritywater.com (O): 617-213-0760 (C): 774-551-6213

Bud Dunbar, AVP Sales bud.dunbar@aclaritywater.com (O): 617-213-0760 (C): 617-448-0440

https://aclaritywater.com

